

Course syllabus for

Signal theory, 7.5 credits

Signalteori, 7.5 hp

This course has been cancelled, for further information see Transitional provisions in the last version of the syllabus.

Please note that the course syllabus is available in the following versions:

Spring2009, Autumn2010, Spring2012, Spring2013, Spring2014, Spring2015, Spring2016,

Spring2024

Course code 1AU011
Course name Signal theory
Credits 7.5 credits

Form of Education Higher Education, study regulation 2007

Main field of study Audiology

Level G1 - First cycle 1

Grading scale Pass, Fail

Department Department of Clinical Science, Intervention and Technology

Decided by Programnämnden för audionomprogrammet

Decision date 2008-10-22

Revised by Programme Committee 4

Last revision 2013-11-04 Course syllabus valid from Spring 2014

Specific entry requirements

Specific eligibility according to The Programme syllabus of The Study Programme in Audiology 180 credits.

Objectives

The general aim of the course is to give the student basic knowledge of signals and systems, and an understanding of audiological applications of signal theory.

Learning outcomes of the course

On completion of the course the student should be able to

- describe signals' properties i time and frequency and explain the relationship between these descriptions
- be able to apply knowledge on how the energy distribution for broadband signals are calculated, relate this to the signal process properties of systems
- be able to account for the bases in digital signal processing, and be able to describe the properties of

Course code: 1AU011

linear and non-linear systems, relate these to hearing aids, and the sense of hear as signal process system, apply this knowledge

- be able to analyse recorded sound by means of the fundamental concepts of signal theory

Content

The following parts are included:

Basic signal theory, 3 hp This part gives basic knowledge of the representation of simple and complex signals in the time and frequency domains and about relations between the representations. The terminology from the basic physics education is extended. The concept of band is treated, including arithmetical rules for band level summation. The basic characteristics of digital signals are discussed. **Signals and Systems, 4.5 hp** This part deals with the affect of systems on signals. Simple ideal systems such as filters are treated as well as real systems, both acoustic and electric. The ear is also brought up as an example of a system. Focus is on linear systems. Undesired non-linearity is treated, such as various types of distortion. The hearing aid as a signal processing system is introduced and, in connection with that, undesired non-linearity is discussed. An orientation is given, how to investigate the characteristics of different systems.

Teaching methods

Lectures, seminars and calculation exercises are interleaved with independent theoretical work and practically orientated laboratory sessions. Laborations and seminars are compulsory. Scheduled supervision is offered in connection to the laboratory sessions.

In case of absence from compulsory part, the student is responsible for contacting course director for complementary assignment.

The course director assesses how absence from compulsory education elements can be replaced. Before the student has participated in the compulsory parts or has replaced compulsory education, in accordance to the instructions of the course director, the final study results cannot be reported.

Absence from a compulsory education element may lead that the student can not recover the occasion until next time the course is given.

Examination

Examination takes place through Part 1: Basic signal theory, 3 HE credits Written laboratory reports Written assignment

Part 2: Signals and Systems, 4.5 HE credits Written assignments Oral presentation

For a Pass grade in the course is required also satisfactory attendance at compulsory parts (laboratory sessions and seminars). For students who have not passed the regular examination, possibility for re-examination is offered at a total of five examinations, of which the three last in connection to the next occasion when the course is given. Supplementation of written assignments/laboratory report is counted as an examination.

Transitional provisions

Examination can take place according to an earlier literature list during a time of one year after the date when a renewal of the literature list has been made. Examination will be provided during a time of two

years after a possible close-down of the course.

Other directives

Assessment criteria for examination, specific instructions for certain tasks and timetable with specification of compulsory parts and list of responsible teachers may be found on Pingpong on the first day of the course.

Course evaluation will be carried out in accordance with the guidelines established by the Board of Education. Course evaluation is carried out both through a written evaluation at the end of the course, and through an oral forum at least once in connection with the course, where the students may express their opinions.

Literature and other teaching aids

Jerkert, J

Akustik från grunden.

Stockholm: Karolinska Institutet., 2006

Rosen, Stuart.; Howell, Peter

Signals and systems for speech and hearing

2. ed.: Bingley: Emerald, 2011 - xvii, 364 p.

ISBN:978-1-84855-226-5 (hbk.) LIBRIS-ID:12037068

Library search

Scientific articles and other materials may be added.

SAME

Handbok i hörselmätning

Almqvist, Bengt

[Ny utg.]: Bromma: SAME och C-A Tegner AB, 2004 - 242 s.

ISBN:91-631-4908-7 LIBRIS-ID:9481154

Library search

Speaks, Charles E

Introduction to sound: acoustics for the hearing and speech sciences

3. ed.: San Diego: Singular Pub. Group, c1999 - xiii, 316 p.

ISBN:1-56593-979-4 LIBRIS-ID:6364449

Chapter 5 to 7 contains an alternative representation of large parts of the course.

Library search